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Outline 
• Our ambition 

• Surveys 

• The role of dynamical models & simulations 

• Equilibrium models, integrability & actions 

• Modelling the thin/thick disc interface with GCS & RAVE 



Our ambition 

•  ¤CDM provides the initial conditions from which 

galaxies formed 

• Massive computers provide the means to integrate from 

these initial conditions 

• So we have an elaborate theory of how galaxies like 

ours formed and predictions for how they are structured 

• Are these predictions correct? What is the structure of 

our Galaxy? What does it directly tell us about the 

structure & evolution of the Universe as a whole? 



Surveys 

• Near-IR point-source catalogues 
– 2MASS, DENIS, UKIDS, VHS, …. 

• Spectroscopic surveys 
– RAVE, SEGUE, HERMES, APOGEE, ESO-Gaia, WHT, … 

• Astrometry 
– Hipparcos, UCAC-4, Pan-Starrs, Gaia, Jasmine, … 

• Already have photometry of ~108 star, proper motions of 
~107 stars, spectra of ~106 stars, trig parallaxes of ~105 
stars 

• By end of decade will have trig parallaxes for ~109 stars 
and spectra of 108 stars  

• We are already data-rich & model-poor 



Need for models  

• Our position near midplane of disc makes models a 
prerequisite for interpretation of data 
– Models provide the means to compensate for strong selection 

effects in survey data 

– Models facilitate compensation for large observational errors  

• The complexity of the MW calls for a hierarchy of model 
of increasing sophistication 
– Axisymmetric model 

– Add the bar 

– add spiral structure 

– Add the warp …. 



Relation to cosmological simulations 

• We now understand the clustering of DM 

• But not the response of baryons because their physics is so complex 

• Very small-scale phenomena (accretion discs, magnetic confinement, 
nucleosynthesis, blast waves) are important for Galaxy-scale structure 

• Analogously, the flow of air is determined by how molecules collide 
with each other 

– At Airbus Industrie they don’t simulate dynamics of >1024 molecules colliding under 
QM  

– They use transport coefficients (viscosity, conductivity) measured in the lab 

• Cosmological simulations depend on parameters of “sub-grid physics” 
which are analogous to viscosity etc 

• The Galaxy offers an opportunity to “measure” these parameters  

 



On pdfs & realisations 

• Models from cosmological simulations are discrete 
realisations of some underlying probability density 
function (pdf) – we don’t expect to find a star exactly 
where the model has one 

• The Galaxy is another discrete realisation 

• How to ask if 2 realisations are consistent with the same 
(unknown) pdf? 
– Seems essential to bin one of the realisations 

– Problematic when data high-dimensional (d >= 10) because 

–  # cells = (cells per axis)d and need many stars/cell 

• Much better to formulate the model as a pdf – then can 
ask if the Galaxy is consistent with this pdf – or in what 
respects the Galaxy materially differs from it – by 
calculating likelihoods 

• Hence we reject N-body & similar models 

 



Equilibrium models  

• The galaxy is not in perfect equilibrium 

• But we must start from equilibrium models: 
– First target is ©(x), which will be an important ingredient of our 

final model  

– Without the assumption of equilibrium, any distribution of stars in 
(x,v) is consistent with any ©(x)  

– From ©(x) we can infer ½DM(x) 

– Can only infer ½DM(x) to the extent that the Galaxy is in 
dynamical equilibrium 

• Non-equilibrium structure (spiral arms, tidal streams,..) 
will show up as differences between the best equilibrium 
model and the Galaxy 

• The Galaxy is not axisymmetric, but it is sensible to start 
with axisymmetric models for related reasons 



Jeans Theorem 

• An equilibrium model can be assumed to 

have DF f(x,v) = f(isolating integrals) 

• Since any function g(isolating integrals) is 
itself an isolating integral, there is 1 

choice of integrals 

• Some integrals stand out: the actions J 

• These alone can be embedded in a 
system (µ,J) of canonical coordinates 



Integrability, tori, actions 

• Have time-independent H = ½p2 + ©(x) 

• Suppose © / ln(x2+y2/q1
2+z2/q2

2) & integrate orbits 

• Orbits come in families 

• Time series x(t) etc are quasiperiodic 

 



Quasiperiodicity implies n isolating 

integrals (Arnold) 

• Quasiperiodic motion in a Hamiltonian with n 

coordinates admits n isolating integrals 

• Orbits effectively surfaces: Integrals = const 

• These surfaces are topologically n-tori in 2n-d 

phase space 

 

 



Angles & actions 

• Choose n closed paths °i around T that cannot be deformed into 
one another 

• Define action Ji=(2¼)-1s°i
 dq.p 

• Then conjugate coordinates µi exist that give position within torus 

• Note on torus T 
– S = is dpidqi = s dJidµi = 0; tori are null 

• Fact: any null n-torus in H = const is an orbit 

• Position within T is specified by n angle variables µi 

– The µi increase linearly in time: µi(t)=µi(0)+it 

• T is labelled by its action integrals Ji = (2¼)-1s°i
 p.dq, which are 

specified up front 

• In an axisymmetric ©, Lz is one of the actions 



Advantages of actions 
• Action integrals: 

– Are essentially unique 

– Are Adiabatic invariants 

– Have clear physical interpretation 

– Make integral (action) space a true representation of phase 
space:     d3xd3v= (2¼)3d3J 

– Make choice of analytic DF easy 

• Knowledge of the µi of stars key to unravelling mergers 
(McMillan & Binney 2008) 

• Angle-action variables (µ,J) are the key to Hamiltonian 
perturbation theory 

• The only problem: how to compute actions? 

• Several schemes are possible. Here we discuss 2 
complementary schemes: torus mapping & the Staeckel 
Fudge (Binney 2012) 



Physical meaning of Ji  

• Axisymmetric case 
– JÁ = Lz conserved angular momentum 

– Jz  controls amplitude of motion ? plane; in spherical ©, Jz = L-
|Lz|; in epicycle approx Jz=Ez/º 

– Jr controls amplitude of radial motion; in epicycle approx Jr = Er/· 

• Triaxial case 
– Box orbits 

• Jx amplitude of long-axis motion 

• Jy amplitude of mid-axis motion 

• Jz amplitude of short-axis motion 

– Short-axis loops 
• JÁ mean angular momentum around z 

• JR radial oscillations 

• Jz vertical oscillations 

– Long-axis loops…. 



The DF and action space 

• d3xd3v=(2¼)3d3J so f(J) is density 

of stars in action space 

• Surface E=const approximately 

planar 

• Disc stars born near JÁ axis & 

diffuse from there into body of 

space 

– Diffusion perp to axis “heating” 

– Diffusion parallel to axis “radial 

migration” 

Isochrone H 



Modelling the thin/thick interface 

• Local stellar population can be broken down into 

– A “thick disc” of >10 Gyr old stars with high ®/Fe and 

mostly low Fe/H 

– A “thin disc” with low ®/Fe and mostly quite high Fe/H 

in which SFR has continued for ~ 10 Gyr at a slowly 

declining rate  

• Thick-disc stars have quite large random 

velocities 

• The random velocities of thin-disc stars increase 

steadily with age 



• We assemble f(J) of discs from “quasi-isothermal” building blocks 

 

 

 

 

 

 

• Exponential in the actions 

• 2 hotness parameters ¾r & ¾z 

 (Lz) the circular frequency 

• ·(Lz), º(Lz) epicycle frequencies 

• L0 ¿ vcR0 unimportant 

Choice of the DF 



The dispersion parameters should 

depend on Lz 

• Hotness parameters vary exponentially with R 

 

 

 

• Radial gradient of <vR

2
> etc controlled by R¾ 



A quasi-isothermal component 

 



The thin disc is always growing & 

heating 
• Hotness parameters also a function of cohort’s age ¿ 

 

 

 

 

 

• Here we fix ¯ = 0.33, ¿m = 10 Gyr, ¿1 = 10 Myr (Aumer & B 2009) 

• Final DF have 9 changeable parameters 

–  ¾r0, ¾z0, Rd, q for thin & thick discs plus fraction of stars in thick 

disc fthck/(1+fthck) 



Fit DF to GCS v distributions 

• Use Press et al amoeba to determine the 9 

parameters that minimise 

–  Â2
vel = Â2

U + Â2
V + Â2

W 

• But GCS UVW don’t constrain the thick disc 

effectively 

• So later use Gilmore-Reid ½(z) & minimise 

–  Â2
rho = ½Â2

vel + 3Â2
½  

 
 



 



Predictions for RAVE survey 

• Rave survey has determined stellar parameters 

& Vlos for ~ 400,000 stars  

• ~50% giants 50% dwarfs 

• Excellent statistics to ~1.5 kpc from Sun 

– GCS extends to ~0.1 kpc from Sun 

• For each star in survey choose a new distance 

(by pdf in distance) & velocity (from model DF), 

compute proper motion & interpret as v at 

catalogue distance 



Hot dwarfs 

 

Black: data  red: prediction 



giants 

 



Hot dwarfs: vÁ 

 



Giants vÁ 

 



Fitting RAVE 

• With pure disc DF can obtain good fits to all kinematics 

but the disc scale lengths required are implausible 

• So we add an isothermal stellar halo 



Fit to RAVE 

• Giants 

• Thin 

– (¾R,¾z)=(33.7,23.5) 

– Rd=3.22 R¾= 21.8 

• Thick 

– (¾R,¾z)=(47.3,50.3) 

– Rd=3.5, R¾=7.9 



In short.. 

• For given ©(x) we can find a DF that 

provides an excellent fit to RAVE 

kinematics 

• The fitted velocity-dispersion parameters 
(¾R, ¾z) of each disc never vary much 

• There is strong degeneracy between the 

scale lengths Rd and R¾ of each disc 

• Best to fix Rd at value implied by ©(x) 



Vertical profiles 

• Here we are fitting DF to kinematics using 
a given © 

• We input stellar & gas discs and a dark 
halo to derive © 

• We obtain density of stellar discs as output 

• How nearly do in/out agree? 



Vertical stellar profiles @ R0 

 

Juric 08 

Phi 

DF 



Next steps 

• Currently we are systematically searching 
for © for which the DF that fits the RAVE 

kinematics yields a vertical stellar profile 
that’s consistent with © 

• This is a slow process..  



Conclusions 
• Dynamical models are key for near-field cosmology 

• Equilibrium models with f(J) are the most useful 

• In the past we lacked ways of computing actions but in the 
axisymmetric case both J(x,v) and x(J,µ) are available 

• Analytic DFs f(J) fitted to GCS kinematics predict RAVE (& SDSS) data 
with a surprising degree of success 

• In any plausible ©(x) an analytic f(J) can be found that fits RAVE 
kinematics essentially perfectly 

• We expect soon to constrain ©(x) strongly by requiring that stellar 
contribution to ½(z) predicted by f(J) agrees with ©(x) 

• Directions of future work   

– Fit data in their own space (®, ±, ¼ ¹® ¹± vlos J,…) 

– Upgrade DF to f(J,[Fe/H]) 

– Add DF of DM and adding self-consistency condition 

 


