Exploiting surveys of the Milky Way

James Binney Oxford University

Outline

- Our ambition
- Surveys
- The role of dynamical models & simulations
- Equilibrium models, integrability & actions
- Modelling the thin/thick disc interface with GCS & RAVE

Our ambition

- ACDM provides the initial conditions from which galaxies formed
- Massive computers provide the means to integrate from these initial conditions
- So we have an elaborate theory of how galaxies like ours formed and predictions for how they are structured
- Are these predictions correct? What is the structure of our Galaxy? What does it directly tell us about the structure & evolution of the Universe as a whole?

Surveys

- Near-IR point-source catalogues
 2MASS, DENIS, UKIDS, VHS,
- Spectroscopic surveys

 RAVE, SEGUE, HERMES, APOGEE, ESO-Gaia, WHT, …
- Astrometry
 - Hipparcos, UCAC-4, Pan-Starrs, Gaia, Jasmine, ...
- Already have photometry of ~10⁸ star, proper motions of ~10⁷ stars, spectra of ~10⁶ stars, trig parallaxes of ~10⁵ stars
- By end of decade will have trig parallaxes for ~10⁹ stars and spectra of 10⁸ stars
- We are already data-rich & model-poor

Need for models

- Our position near midplane of disc makes models a prerequisite for interpretation of data
 - Models provide the means to compensate for strong selection effects in survey data
 - Models facilitate compensation for large observational errors
- The complexity of the MW calls for a hierarchy of model of increasing sophistication
 - Axisymmetric model
 - Add the bar
 - add spiral structure
 - Add the warp ….

Relation to cosmological simulations

- We now understand the clustering of DM
- But not the response of baryons because their physics is so complex
- Very small-scale phenomena (accretion discs, magnetic confinement, nucleosynthesis, blast waves) are important for Galaxy-scale structure
- Analogously, the flow of air is determined by how molecules collide with each other
 - At Airbus Industrie they don't simulate dynamics of >10²⁴ molecules colliding under QM
 - They use transport coefficients (viscosity, conductivity) measured in the lab
- Cosmological simulations depend on parameters of "sub-grid physics" which are analogous to viscosity etc
- The Galaxy offers an opportunity to "measure" these parameters

On pdfs & realisations

- Models from cosmological simulations are discrete realisations of some underlying probability density function (pdf) – we don't expect to find a star exactly where the model has one
- The Galaxy is another discrete realisation
- How to ask if 2 realisations are consistent with the same (unknown) pdf?
 - Seems essential to bin one of the realisations
 - Problematic when data high-dimensional (d >= 10) because
 - # cells = (cells per axis)^d and need many stars/cell
- Much better to formulate the model as a pdf then can ask if the Galaxy is consistent with this pdf – or in what respects the Galaxy materially differs from it – by calculating likelihoods
- Hence we reject N-body & similar models

Equilibrium models

- The galaxy is not in perfect equilibrium
- But we must start from equilibrium models:
 - First target is $\Phi(x)$, which will be an important ingredient of our final model
 - Without the assumption of equilibrium, any distribution of stars in (x,v) is consistent with any $\Phi(x)$
 - From $\Phi(\mathbf{x})$ we can infer $\rho_{DM}(\mathbf{x})$
 - Can only infer $\rho_{DM}(\mathbf{x})$ to the extent that the Galaxy is in dynamical equilibrium
- Non-equilibrium structure (spiral arms, tidal streams,..) will show up as differences between the best equilibrium model and the Galaxy
- The Galaxy is not axisymmetric, but it is sensible to start
 with axisymmetric models for related reasons

Jeans Theorem

- An equilibrium model can be assumed to have DF f(x,v) = f(isolating integrals)
- Since any function g(isolating integrals) is itself an isolating integral, there is ∞ choice of integrals
- Some integrals stand out: the actions J
- These alone can be embedded in a system (θ ,J) of canonical coordinates

Integrability, tori, actions

- Have time-independent $H = \frac{1}{2}p^2 + \Phi(x)$
- Suppose $\Phi \propto \ln(x^2+y^2/q_1^2+z^2/q_2^2)$ & integrate orbits
- Orbits come in families
- Time series x(t) etc are quasiperiodic

Quasiperiodicity implies n isolating integrals (Arnold)

- Quasiperiodic motion in a Hamiltonian with n coordinates admits n isolating integrals
- Orbits effectively surfaces: Integrals = const
- These surfaces are topologically n-tori in 2n-d phase space

Angles & actions

- Choose n closed paths $\gamma_{\rm i}$ around T that cannot be deformed into one another
- Define action $J_i = (2\pi)^{-1} \int_{\gamma_i} dq.p$
- Then conjugate coordinates θ_i exist that give position within torus
- Note on torus T
 - $S = \sum_{i} \int dp_{i} dq_{i} = \sum \int dJ_{i} d\theta_{i} = 0$; tori are *null*
- Fact: any null n-torus in H = const is an orbit
- Position within T is specified by n angle variables θ_i
 - The θ_i increase linearly in time: $\theta_i(t) = \theta_i(0) + \Omega_i t$
- T is labelled by its action integrals $J_i = (2\pi)^{-1} \int_{\gamma_i} p.dq$, which are specified up front
- In an axisymmetric Φ , L_z is one of the actions

Advantages of actions

- Action integrals:
 - Are essentially unique
 - Are Adiabatic invariants
 - Have clear physical interpretation
 - Make integral (action) space a true representation of phase space: $d^3xd^3v = (2\pi)^3d^3J$
 - Make choice of analytic DF easy
- Knowledge of the θ_i of stars key to unravelling mergers (McMillan & Binney 2008)
- Angle-action variables (θ, J) are the key to Hamiltonian perturbation theory
- The only problem: how to compute actions?
- Several schemes are possible. Here we discuss 2 complementary schemes: torus mapping & the Staeckel Fudge (Binney 2012)

Physical meaning of J_i

- Axisymmetric case
 - $J_{\phi} = L_z$ conserved angular momentum
 - J_z^{T} controls amplitude of motion \perp plane; in spherical Φ , $J_z = L |L_z|$; in epicycle approx $J_z = E_z/\nu$
 - J_r controls amplitude of radial motion; in epicycle approx $J_r = E_r/\kappa$
- Triaxial case
 - Box orbits
 - J_x amplitude of long-axis motion
 - J_y amplitude of mid-axis motion
 - J_z amplitude of short-axis motion
 - Short-axis loops
 - J_{ϕ} mean angular momentum around z
 - $J_R^{'}$ radial oscillations
 - J_z vertical oscillations
 - Long-axis loops....

The DF and action space

- d³xd³v=(2π)³d³J so f(J) is density of stars in action space
- Surface E=const approximately planar
- Disc stars born near J_{ϕ} axis & diffuse from there into body of space
 - Diffusion perp to axis "heating"
 - Diffusion parallel to axis "radial migration"

Modelling the thin/thick interface

- Local stellar population can be broken down into
 - A "thick disc" of >10 Gyr old stars with high α /Fe and mostly low Fe/H
 - A "thin disc" with low α /Fe and mostly quite high Fe/H in which SFR has continued for ~ 10 Gyr at a slowly declining rate
- Thick-disc stars have quite large random velocities
- The random velocities of thin-disc stars increase steadily with age

Choice of the DF

• We assemble f(J) of discs from "quasi-isothermal" building blocks

$$f(\mathbf{J}) \equiv \frac{\Omega \nu \Sigma}{2\pi^2 M \sigma_r^2 \sigma_z^2 \kappa} \bigg|_{R_c} \operatorname{cut}(L_z) \, \mathrm{e}^{-\kappa J_r / \sigma_r^2} \, \mathrm{e}^{-\nu J_z / \sigma_z^2}$$
$$\operatorname{cut}(L_z) = \frac{1}{2} \left[1 + \tanh(L_z / L_0) \right]$$

- Exponential in the actions
- 2 hotness parameters σ_r & σ_z
- \Box $\Omega(L_z)$ the circular frequency
- $\kappa(L_z)$, $\nu(L_z)$ epicycle frequencies
- $L_0 \ll v_c R_0$ unimportant

The dispersion parameters should depend on L_z

Hotness parameters vary exponentially with R

 $\sigma_r(L_z) = \sigma_{r0} e^{(R_0 - R_c)/R_\sigma}$ $\sigma_z(L_z) = \sigma_{z0} e^{(R_0 - R_c)/R_\sigma}$

• Radial gradient of $< v_R^2 >$ etc controlled by R_σ

A quasi-isothermal component

The thin disc is always growing & heating

- Hotness parameters also a function of cohort's age τ

$$\sigma_z(L_z,\tau) = \sigma_{z0} \left(\frac{\tau + \tau_1}{\tau_m + \tau_1}\right)^{\beta} e^{q(R_0 - R_c)/R_d}$$

$$f_{\rm thn}(\mathbf{J}) = \int_0^{\tau_m} \mathrm{d}\tau \frac{\mathrm{e}^{\tau/t_0} f_{\sigma_r}(J_r, L_z) f_{\sigma_z}(J_z)}{t_0(\mathrm{e}^{\tau_m/t_0} - 1)}$$

- Here we fix β = 0.33, τ_m = 10 Gyr, τ_1 = 10 Myr (Aumer & B 2009)
- Final DF have 9 changeable parameters
 - $-~\sigma_{ro},\,\sigma_{zo},\,\rm R_d,\,q$ for thin & thick discs plus fraction of stars in thick disc $\rm f_{thck}/(1+f_{thck})$

Fit DF to GCS v distributions

Use Press et al amoeba to determine the 9
parameters that minimise

- $\chi^2_{\rm \,vel}$ = $\chi^2_{\rm \,U}$ + $\chi^2_{\rm \,V}$ + $\chi^2_{\rm \,W}$

- But GCS UVW don't constrain the thick disc effectively
- So later use Gilmore-Reid $\rho(z)$ & minimise

$$- \chi^{2}_{\rm rho} = \frac{1}{2} \chi^{2}_{\rm vel} + 3 \chi^{2}_{\rho}$$

Predictions for RAVE survey

- Rave survey has determined stellar parameters
 & V_{los} for ~ 400,000 stars
- ~50% giants 50% dwarfs
- Excellent statistics to ~1.5 kpc from Sun
 GCS extends to ~0.1 kpc from Sun
- For each star in survey choose a new distance (by pdf in distance) & velocity (from model DF), compute proper motion & interpret as v at catalogue distance

Hot dwarfs

Black: data red: prediction

giants

Hot dwarfs: v_{ϕ}

Giants v_{ϕ}

Fitting RAVE

- With pure disc DF can obtain good fits to all kinematics but the disc scale lengths required are implausible
- So we add an isothermal stellar halo $f_{\text{halo}}(E) = \exp\left(\frac{H}{\sigma_{\text{halo}}^2} \eta\right)$

		(a)	(b)	(c)	(d)	(e)	(f)
Thin	σ_{r0}	36.3	37.1	37.2	36.1	35.5	35.4
	σ_{z0}	25.7	26.1	26.4	25.1	26.0	25.2
	$R_{\rm d}$	4.41	7.31	6.01	3.40	3.81	2.64
	R_{σ}	6.46	8.13	9.80	12.41	10.08	25.17
Thick	σ_{r0}	52.6	53.9	54.5	51.1	49.2	47.4
	σ_{z0}	55.0	55.6	56.9	52.3	53.5	51.2
	$R_{\rm d}$	18.6	4.72	3.46	2.93	3.69	2.97
	R_{σ}	4.91	8.76	10.15	9.64	8.06	8.53
	F	0.140	0.889	1.219	0.756	0.541	0.397
Halo	$\sigma_{ m H}$	-	95.3	96.4	98.0	94.6	112.8
	η	-	26.113	25.923	26.15	30.55	25.34
	χ^2	6.44	5.73	5.95	7.52	8.25	9.43

Fit to RAVE

- Giants
- Thin
 - $(\sigma_R, \sigma_z) = (33.7, 23.5)$ - $R_d = 3.22 R_\sigma = 21.8$
- Thick
 - $(\sigma_R, \sigma_z) = (47.3, 50.3)$ - $R_d = 3.5, R_\sigma = 7.9$

In short..

- For given Φ(x) we can find a DF that provides an excellent fit to RAVE kinematics
- The fitted velocity-dispersion parameters $(\sigma_{\rm R}, \sigma_{\rm z})$ of each disc never vary much
- There is strong degeneracy between the scale lengths $\rm R_d$ and $\rm R_\sigma$ of each disc
- Best to fix R_d at value implied by $\Phi(x)$

Vertical profiles

- Here we are fitting DF to kinematics using a given \varPhi
- We input stellar & gas discs and a dark halo to derive Φ
- We obtain density of stellar discs as output
- How nearly do in/out agree?

Vertical stellar profiles @ R₀

Next steps

- Currently we are systematically searching for *Φ* for which the DF that fits the RAVE kinematics yields a vertical stellar profile that's consistent with *Φ*
- This is a slow process..

Conclusions

- Dynamical models are key for near-field cosmology
- Equilibrium models with f(J) are the most useful
- In the past we lacked ways of computing actions but in the axisymmetric case both J(x,v) and $x(J,\theta)$ are available
- Analytic DFs f(J) fitted to GCS kinematics predict RAVE (& SDSS) data with a surprising degree of success
- We expect soon to constrain Φ(x) strongly by requiring that stellar contribution to ρ(z) predicted by f(J) agrees with Φ(x)
- Directions of future work
 - Fit data in their own space (α , δ , $\pi \ \mu_{\alpha} \ \mu_{\delta} \ v_{los} \ J,...$)
 - Upgrade DF to f(J,[Fe/H])
 - Add DF of DM and adding self-consistency condition