Recent advances in core-collapse supernova theory

J. Nordhaus NSF Fellow - Rochester Institute of Technology

AIP Seminar 4.27.12

"Every passing hour brings the Solar System 43,000 miles closer to Globular Cluster M13 in Hercules - and still there are some misfits who insist there is no such thing as progress" - Ransom K. Fern

> Kurt Vonnegut The Sirens Of Titan

Contending Explosion Models:

- Neutrino Driven
- MHD Driven
- Acoustically Driven

The origin of neutron star kicks.

Multi-dimensional core collapse.

Pulsar spins from non-rotating progenitors.

Collaborators:

Princeton: E. Rantsiou, T. Brandt, A. Burrows LBNL: A. Almgren Caltech: C. Ott

Potentially Important Ingredients

- Gravity
- Neutrino Heating
- Turbulence / Convection and Shock Instabilities
- Rotation
- Magnetic fields
- Nucleosynthesis
- General Relativity

Multi-dimensional effects important!

Goal: 3D models with sufficient realism that produce SN explosions

Brief History

Brief History

Direct Hydrodynamic Collapse Colgate et al. 1961

Brief History

Direct Hydrodynamic Collapse Colgate et al. 1961

Delayed Neutrino Mechanism Colgate & White 1966; Arnett 1966; Wilson 1971

Brief History

Direct Hydrodynamic Collapse Colgate et al. 1961

Delayed Neutrino Mechanism Colgate & White 1966; Arnett 1966; Wilson 1971

Current Status of Modern Simulations (from ~1995 - 2010):

Spherically Symmetric: Do not explode

Axisymmetric: Marginal explosions for a few cases

Three Dimensional: ???

Neutrino-driven explosion

Net neutrino deposition in ``gain region"

Entropy ------>

2D axisymmetric calculation

Low-mass progenitor, low binding energy

Electron fraction \longrightarrow

Neutrino-driven wind

Neutrino-driven explosion

Net neutrino deposition in ``gain region"

Entropy —

2D axisymmetric calculation

Low-mass progenitor, low binding energy

Electron fraction

Neutrino-driven wind

MHD-driven explosion

Bipolar explosions

Requires rapid rotation Initial core period < 2 s

← Linear winding only Burrows et al. 2007

Exponential B-field growth via dynamos / MRI

Akiyama+ 2003 Blackman, Nordhaus & Thomas 2006

MHD-driven explosion

Bipolar explosions

Requires rapid rotation Initial core period < 2 s

— Linear winding only Burrows et al. 2007

Exponential B-field growth via dynamos/ MRI

Akiyama+ 2003 Blackman, Nordhaus & Thomas 2006

Acoustically-driven explosion

Advective/acoustic

self-excited oscillator

primary core 1=1, g-mode

late time explosions:
> 1 second

parametric instability saturates primary mode power at $\sim 10^{48}$ erg

Weinberg & Quataert 2008

Burrows et al. 2006

Acoustically-driven explosion

Advective/acoustic self-excited oscillator

primary core 1=1, g-mode

late time explosions: > 1 second

parametric instability saturates primary mode power at $\sim 10^{48} \mathrm{erg}$

Weinberg & Quataert 2008

Burrows et al. 2006

Recoil from Core Collapse The Hydrodynamic Mechanism of Pulsar Kicks

Neutron Star Kicks I

Pulsar birth velocities typically $300 - 400 \text{ km s}^{-1}$

VULCAN/2D - Rad-hydro simulation Nordhaus et al. 2010a

Explosion primarily in +Z direction...

...leads to NS recoil in -Z direction

see also Scheck et al. 2006; Wongwathanarat et al. 2010

Neutron Star Kicks II

Neutron Star Kicks II

At the end of the simulation:

Location of shock is in black

Hydrodynamic Mechanism of Pulsar Kicks

Radiation field is smooth... ... matter field is not.

Radiation field is smooth... ... matter field is not.

Elux Vectora	0 0	Fintrenu
7/	$\Omega = 0$	
21.01 MeV	Distance = 500.0 km	200 1200 1200 1200 1200 1200 1200 1200

Hydrodynamic Origin of Pulsar Kicks

CASTRO - with neutrino heating/cooling scheme

Hydrodynamic Origin of Pulsar Kicks

CASTRO - with neutrino heating/cooling scheme

Hydrodynamic Origin of Pulsar Kicks

Nordhaus et al. 2012

Pulsar Kicks

Gravitational effects are important.

With AMR can follow evolution farther in time.

NS decoupled from surroundings

Nordhaus et al. 2012

At late times, gravity of the slow-moving ejecta dominates.

Nordhaus et al. 2012

Nordhaus et al. 2012

s et al. 2012

Time After Bounce [s]

3D Core Collapse Very different from 1D and 2D core collapse!

CASTRO: Compressible Astrophysics

- New multi-D radiation-hydrodynamics code
- Adaptive mesh refinement (AMR) with sub-cycling in time
- Advection: 2nd order, unsplit piecewise-linear or PPM
- Radiation: multi-group flux limited diffusion
- Gravity: Monopole or multi-grid Poisson solve
- Scales to over 200,000 cores!
- Team: Ann Almgren (LBL) John Bell (LBL) Louis Howell (LLNL) Jason Nordhaus (Princeton) Adam Burrows (Princeton)

3D AMR block structure

CASTRO Simulations

Spatial Dimension

The key to the neutrino mechanism

Dimensional Dependence

Spherically Symmetric

Axisymmetric

Nordhaus et al. 2010b

see also Burrows & Goshy 1993; Murphy & Burrows 2008

Dimensional Dependence

Axisymmetric

Three Dimensional

Average Shock Radii

Time of explosion is a strong function of dimension!

Critical Curve for Explosions

Nordhaus et al. 2010b

see also Burrows & Goshy 1993; Murphy & Burrows 2008

Higher Entropy and Longer Dwell Times

Dwell Time Distribution

Standing Accretion Shock Instability (SASI)

Axisymmetric

 $l = 1 \mod l$ is dominant

Suggested as a fundamental characteristic of SN dynamics and way to spin-up pulsars;

Blondin & Mezzacappa 2007

Standing Accretion Shock Instability (SASI)

Axisymmetric

 $\ell = 1 \mod \ell$ is dominant

Suggested as a fundamental characteristic of SN dynamics and way to spin-up pulsars;

Blondin & Mezzacappa 2007

2000 kilometers

Non-Rotating Initial Model

Non-Rotating Initial Model

2000 kilometers

Rotating Initial Model

Rotating Initial Model

Time=0.071632 s

2000 kilometers

Rotating Initial Model

Non-Rotating Initial Model

Explodes earlier and more mixing of ejecta Initial rotation produces a preferred axis

Pulsar Spins

From instabilities during core collapse

Pulsar Spin Periods

Suggested that core collapse could produce tens of ms birth spin periods from nonrotating progenitors.

> Blondin & Mezzcappa 2007 Blondin & Shaw 2007

Initial simulations did not:

- follow collapse
- form the neutron star
- use a nuclear EOS
- explode

$15\,M_{\odot}$ progenitor, induced explosion

- ``Ejected" angular momentum bump
- Final NS period is ~3 seconds

Spatial and temporal evolution of angular momentum

What about fallback?

Conclusions

Dimensional dependence for core-collapse supernova explosions!

50% easier to explode in 3D
vs. 1D - all else being equal.

Recoil is a natural outcome of hydrodynamics during core collapse.

• High pulsar spin periods are not a result of core collapse of non-rotating cores.

We're eagerly awaiting petascale computations on NSF's Blue Waters!

Office of Science NT OF ENERGY

AIP Seminar 4.27.12

