Cosmological Physics through signatures of galaxy motions

Outline

Key observations

- Observations of the initial conditions: the CMB
- Observations of the evolved structure

2 Cosmological Dynamics

- Equations of motion
- Dynamics of linear perturbations
- Dynamics of the expansion

3 Applications

- The Bulk flow (BF) from observed velocities
- Velocity-Velocity comparison
- Homogeneity on very large scales
- 4 Alternative probes of large scale motions
 - Gaia
 - Luminosity variations

Collaborators

- Marc Davis (UC Berkeley)
- Enzo Branchini (Rome III)
- Martin Feix (Technion)
- Jim Peebles (Princeton)

The challenge: structure formation in an accelerating Universe

Accelerated Expansion of the Universe

Observations of the initial conditions: the CMB Observations of the evolved structure

Cosmic Microwave Background (CMB) radiation

Tiny fluctuations at recombination era — 300,000 years after Big Bang

A lot is known about the Initial Conditions. The shape of C_l is sensitive to some of the cosmological parameters

Observations of the initial conditions: the CMB Observations of the evolved structure

Cosmological parameters inferred from CMB + other data

	WMAP Cosmological Pa			
	Model: lcdm+sz+l			
	Data: wmap7			
$10^2\Omega_b h^2$	$2.258^{+0.057}_{-0.056}$	$1 - n_s$	0.037 ± 0.014	
$1 - n_s$	$0.0079 < 1 - n_s < 0.0642~(95\%~{\rm CL})$	$A_{BAO}(z = 0.35)$	$0.463^{+0.021}_{-0.020}$	
C_{220}	5763^{+38}_{-40}	$d_A(z_{eq})$	14281^{+158}_{-161} Mpc	
$d_A(z_*)$	14116^{+160}_{-163} Mpc	Δ_R^2	$(2.43\pm 0.11)\times 10^{-9}$	
h	0.710 ± 0.025	H_0	$71.0\pm2.5~\mathrm{km/s/Mpc}$	74% Dark Energy
k_{eq}	$0.00974^{+0.00041}_{-0.00040}$	ℓ_{eq}	137.5 ± 4.3	, no sam incryj
<i>l</i> *	302.44 ± 0.80	n_s	0.963 ± 0.014	
Ω_b	0.0449 ± 0.0028	$\Omega_b h^2$	$0.02258^{+0.00057}_{-0.00056}$	
Ω_c	0.222 ± 0.026	$\Omega_c h^2$	0.1109 ± 0.0056	
Ω_{Λ}	0.734 ± 0.029	Ω_m	0.266 ± 0.029	2204 Dark
$\Omega_m h^2$	$0.1334^{+0.0056}_{-0.0055}$	$r_{\rm hor}(z_{\rm dec})$	$285.5\pm3.0~{\rm Mpc}$	
$r_s(z_d)$	$153.2 \pm 1.7 \text{ Mpc}$	$r_s(z_d)/D_v(z=0.2)$	$0.1922^{+0.0072}_{-0.0073}$	Matter /
$r_s(z_d)/D_v(z = 0.35)$	$0.1153^{+0.0038}_{-0.0039}$	$r_s(z_*)$	$146.6^{+1.5}_{-1.6}$ Mpc	
R	1.719 ± 0.019	σ_8	0.801 ± 0.030	
A_{SZ}	$0.97^{+0.68}_{-0.97}$	t_0	$13.75\pm0.13~\mathrm{Gyr}$	
τ	0.088 ± 0.015	θ_*	0.010388 ± 0.000027	
θ_*	0.5952 ± 0.0016 °	t.,	379164 ⁺⁵¹⁸⁷ ₋₅₂₄₃ yr	
$z_{\rm dec}$	1088.2 ± 1.2	z_d	1020.3 ± 1.4	
$z_{\rm eq}$	3196^{+134}_{-133}	$z_{\rm reion}$	10.5 ± 1.2	4% Atoms
z_*	$1090.79^{+0.94}_{-0.92}$			

Observations of the initial conditions: the CMB Observations of the evolved structure

The distribution of galaxies in space: redshift surveys

SDSS, from M. Blanton .8 edshift

 $cz = Hr + V_{pec}$

Observations of the initial conditions: the CMB Observations of the evolved structure

Radial peculiar motions of galaxies in space

From Davis et al based on SFI++ data of Springob et al

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

The equations for structure formation (without gas)

Structure formation is driven by the gravity of the DM density contrast $\delta(\mathbf{x}, t)$, but the rate is dictated by H(t) and $\Omega_m = \bar{\rho}_m / \rho_{crit}$.

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

Growth of structure in a simulation

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

Linear theory and dependence on cosmological background

- ullet obtained from the full EOM in the limit of $\delta\ll 1$
- $f(\Omega) pprox \Omega^{\gamma}_{_{matter}}$
- $0.5 < \gamma < 0.6$ is the *growth index*, it is dictated by the underlying theory of gravity and dark energy

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

Goals

Constrain Ω , γ ... Test underlying gravitational theory... Test basic paradigm on large scales...

Methodology

Application of the Fundamental Relation (or variants of it) to peculiar velocity catalogues and redshift surveys

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

Dynamics of the Background

General relativity: $E = \frac{\dot{a}^2}{2} - \frac{GM}{a} - \frac{4\pi G}{3} \rho_v a^2$

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

Dark Energy

The usual candidates

- quintessence: a scalar field
- $\tilde{f}(R)$ gravity: $S = \frac{1}{16\pi G} \int d^4 x \tilde{f}(R) \sqrt{-g} + S^{matter}$
- DGP (Dvali, Gabadadze & Porrati) gravity

Since

 $\ln \text{ GR } \ddot{a} = -4\pi G(\rho + 3P)a/3$

hence

Dark Energy should mimic GR with an EOS $P = w \rho c^2$ with $w \rightarrow -1$ at late times

Equations of motion Dynamics of linear perturbations Dynamics of the expansion

Dark Energy

The usual candidates

- quintessence: a scalar field
- $\tilde{f}(R)$ gravity: $S = \frac{1}{16\pi G} \int d^4 x \tilde{f}(R) \sqrt{-g} + S^{matter}$
- DGP (Dvali, Gabadadze & Porrati) gravity

Since In GR $\ddot{a} = -4\pi G(\rho + 3P)a/3$

hence

Dark Energy should mimic GR with an EOS $P = w\rho c^2$ with $w \rightarrow -1$ at late times

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{v} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- \sim get $\delta_{
 m end}$ from observed galaxy distribution.
- use the Fundamental Relation to get ${\sf V}_{\sf rel}$ from $\delta_{\sf rel}$
- the comparison M_{gal} versus M_{gal} constraints frand lig_{gal} (from), it is galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{ν} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- \sim get $\delta_{
 m col}$ from observed galaxy distribution
- \sim use the Fundamental Relation to get $N_{
 m ed}$ from $\delta_{
 m ed}$
- the comparison M_{gal} versus M_{gal} constraints frand lig_{gal} (from), it is galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{v} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- \bullet get $\delta_{
 m col}$ from observed galaxy distribution
- \ast use the Fundamental Relation to get N $_{
 m od}$ from $\delta_{
 m odd}$
- the comparison M_{gal} versus M_{star} constraints *E* and d_{gal}(draw), i.e., galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{v} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- get δ_{gal} from observed galaxy distribution
- lpha use the Eundamental Relation to get $M_{
 m gal}$ from $\delta_{
 m gal}$
- the comparison M_{gal} versus M_{gal} constrains d and $\delta_{gal}(\delta_{DM})$, i.e. galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{v} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- get δ_{gal} from observed galaxy distribution
- use the Fundamental Relation to get ${\sf V}_{gal}$ from δ_{gal}
- the comparison V_{gal} versus V_{obs} constrains f and $\delta_{gal}(\delta_{DM})$, i.e. galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{v} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- get δ_{gal} from observed galaxy distribution
- ullet use the Fundamental Relation to get $old V_{gal}$ from δ_{gal}
- the comparison V_{gal} versus V_{obs} constrains f and $\delta_{gal}(\delta_{DM})$, i.e. galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{v} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- get δ_{gal} from observed galaxy distribution
- use the Fundamental Relation to get \mathbf{V}_{gal} from δ_{gal}
- the comparison V_{gal} versus V_{obs} constrains f and $\delta_{gal}(\delta_{DM})$, i.e. galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Strategies for inferring cosmological information from data

A. statistical properties of observed velocities:

- P_{δ}^{CMB} versus P_{v} yields constraints on $f(\Omega)$
- moments of velocities, e.g. bulk flow

- get δ_{gal} from observed galaxy distribution
- use the Fundamental Relation to get V_{gal} from δ_{gal}
- the comparison V_{gal} versus V_{obs} constrains f and $\delta_{gal}(\delta_{DM})$, i.e. galaxy biasing

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Definition

$$\mathbf{B}(r) = \frac{3}{4\pi r^3} \int_{x < r} \mathbf{V}(\mathbf{x}) d^3 x$$

V(x) is the 3D velocity field

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

But....

Data: noisy and sparse radial velocities!

BF from the sparse SFI++ catalogue of peculiar velocities

Methods for inferring BF from observed velocities:

- **O** MLE: simply assume V(x) = B = constant (Kaiser 84)
- ASCE: interpolate using physically motivated basis for the velocity field (AN & Davis 11). This is similar to constrained realisations (Courtois, Hoffman, Tully & Gottlöber 12)

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison

Key observations Cosmological Dynamics **Applications** Alternative probes of large scale motions

 $\sigma_8 =$ the clustering amplitude Ω_m^{γ} fixes velocity amplitude

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

The 3 components (Galactic coordinates)

B is at 40 deg to the SGP B is pretty featureless

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Constant direction and slowly decaying

Some BF values

R[Mpc]	$B(R)[\mathrm{km~s^{-1}}]$	1	b
\sim 2 (CMB dip.)	627 ± 22	276 ± 3	30 ± 3
60	333 ± 38	276 ± 2	14 ± 2
150	257 ± 44	279 ± 4	10 ± 4

Note: external fluctuations give B = const.

Is there a "dark flow" (or Kashlinsky flow)?

Dark flow = large bulk flow (~ 1000 km s⁻¹) over a very large scale. Such a flow will introduce detectable systematic differences in the observed galaxy magnitudes, $M_0 = m - 5 \log(cz)$.

BF from SDSS, $14.5 < m_{\rm r} < 17.6$

R[Mpc]	B(R)[km s ⁻¹]	$I_{\rm fixed}$	$b_{ m fixed}$	
100 - 300	-150 ± 150	266	33	
300 - 500	300 ± 150	266	33	

No evidence for dark flow in SDSS

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Velocities

from the Fundamental Relation applied to a galaxy redshift survey. Requires an assumed $f(\Omega)$ and a *biasing relation* between galaxies and mass.

versus

Velocities

directly from the Tully-Fisher relation. Requires careful removal of observational biases.

Velocity-Velocity comparison

flow from PCSZ (by E.Branchini)

A Caution

Two basic "obstacles" (related to V_{gal} from δ_{gal})

Galaxy Biasing

What is $\delta_{gal}(\delta_{DM})$?

Redshift Distortions in redshift surveys

We observe galaxies at $cz = Hr + V^{radial}$ rather than Hr.

Two basic "obstacles" (related to V_{gal} from δ_{gal})

Galaxy Biasing

What is $\delta_{gal}(\delta_{DM})$?

Redshift Distortions in redshift surveys

We observe galaxies at $cz = Hr + V^{radial}$ rather than Hr.

Two basic "obstacles" (related to V_{gal} from δ_{gal})

Galaxy Biasing

What is $\delta_{gal}(\delta_{DM})$?

Redshift Distortions in redshift surveys

We observe galaxies at $cz = Hr + V^{radial}$ rather than Hr.

Galaxy Biasing

Galaxies preferentially form at peaks of δ_{DM}

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Linear Galaxy Biasing

On large scales (Kaiser 87)

$$\delta_{gal} = \mathbf{b} \, \delta_{DM}$$

b is the linear bias factor.

Biasing in a simulation

Biasing in observations (SDSS)

Zehavi et al 2002 97

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Redshift distortions

Key observations Cosmological Dynamics Applications

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on verv large scales

Redshift distortions

by Hume Feldman

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Definition

$$s \equiv Hr + V^{\text{radia}}$$

Hence

$$\delta^{s} = \delta^{r} - \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} V^{\text{radial}} \right)$$
$$= -\frac{1}{f} \nabla \cdot \mathbf{V} - \left[\nabla \cdot \mathbf{V} \right]_{\text{radial}}$$

 δ^{r} is isotropic but δ^{s} is not!

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Definition

$$s \equiv Hr + V^{\text{radial}}$$

Hence

$$\delta^{\mathrm{s}} = \delta^{\mathrm{r}} - \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} V^{\mathrm{radial}} \right)$$
$$= -\frac{1}{f} \nabla \cdot \mathbf{V} - \left[\nabla \cdot \mathbf{V} \right]_{\mathrm{radial}}$$

 δ^{r} is isotropic but δ^{s} is not!

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Definition

$$s \equiv Hr + V^{\text{radial}}$$

Hence

$$\delta^{s} = \delta^{r} - \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} V^{radial} \right)$$
$$= -\frac{1}{f} \nabla \cdot \mathbf{V} - \left[\nabla \cdot \mathbf{V} \right]_{radial}$$

 δ^{r} is isotropic but δ^{s} is not!

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Definition

$$s \equiv Hr + V^{\text{radial}}$$

Hence

$$\delta^{s} = \delta^{r} - \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} V^{radial} \right)$$
$$= -\frac{1}{f} \nabla \cdot \mathbf{V} - \left[\nabla \cdot \mathbf{V} \right]_{radial}$$

 $\delta^{\rm r}$ is isotropic but $\delta^{\rm s}$ is not!

Key observations Cosmological Dynamics Applications

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Visual inspection

Key observations Cosmological Dynamics Applications

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Visual inspection

 $\beta = f(\Omega)/b$

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Is the Universe close to homogeneity on a few Gpc scale?

The Cosmological Principle

Increasing degree of homogeneity as the Universe is viewed on larger and large scales

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

Probing scales larger than L_{data}

- Let δ^{*} be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- Let V_{ext} be the component of the velocity field due to mass distribution external to the survey volume
- Note that:

Hence signatures of external fluctuations must be present in 6° inside the survey volume.

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

- Let δ^s be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- $\bullet~$ Let $V_{\rm ext}$ be the component of the velocity field due to mass distribution external to the survey volume
- Note that
 - $\circ: \delta^{\circ} \longrightarrow = f^{-1} \nabla \circ V = [\nabla \circ V]_{\mathrm{radial}}$
 - $*: \nabla \cdot \nabla_{ext} = 0$ inside the survey volume.
 - $\sim [\nabla M_{\rm ord}]_{\rm order} \neq 0$ inside the survey volume
- \bullet Hence signatures of external fluctuations must be present in $\delta^{\rm s}$ inside the survey volume.

The Bulk flow (BF) from observed velocities Velocity-Velocity comparison Homogeneity on very large scales

- Let δ^s be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- Let $V_{\rm ext}$ be the component of the velocity field due to mass distribution external to the survey volume
- Note that
 - $\bullet \ \delta^{\rm s} = -f^{-1} \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{V}} \left[\boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{V}}\right]_{\rm radia}$
 - $\ast:\nabla\cdot\mathbb{V}_{\mathrm{ext}}=0$ inside the survey volume.
 - $\sim [V V_{ord}]_{order} \neq 0$ inside the survey volume
- \bullet Hence signatures of external fluctuations must be present in $\delta^{\rm s}$ inside the survey volume.

- Let δ^s be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- Let $V_{\rm ext}$ be the component of the velocity field due to mass distribution external to the survey volume
- Note that
 - $\delta^{\mathrm{s}} = -f^{-1} \nabla \cdot \mathbf{V} \left[\nabla \cdot \mathbf{V} \right]_{\mathrm{radia}}$
 - $\boldsymbol{\nabla} \cdot \boldsymbol{V}_{\mathrm{ext}} = \boldsymbol{0}$ inside the survey volume.
 - $\left[{m
 abla} \cdot {m V}_{
 m ext}
 ight]_{
 m radial}
 eq 0$ inside the survey volume
- \bullet Hence signatures of external fluctuations must be present in $\delta^{\rm s}$ inside the survey volume.

- Let δ^s be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- Let $V_{\rm ext}$ be the component of the velocity field due to mass distribution external to the survey volume
- Note that
 - $\delta^{\mathrm{s}} = -f^{-1} \boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{V}} \left[\boldsymbol{\nabla} \cdot \boldsymbol{\mathsf{V}} \right]_{\mathrm{radial}}$
 - $\boldsymbol{\nabla} \cdot \boldsymbol{V}_{\mathrm{ext}} = \boldsymbol{0}$ inside the survey volume.
 - $\left[{m
 abla} \cdot {m V}_{
 m ext}
 ight]_{
 m radial}
 eq 0$ inside the survey volume
- \bullet Hence signatures of external fluctuations must be present in $\delta^{\rm s}$ inside the survey volume.

- Let δ^s be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- Let $V_{\rm ext}$ be the component of the velocity field due to mass distribution external to the survey volume
- Note that
 - $\delta^{\mathrm{s}} = -f^{-1} \nabla \cdot \mathbf{V} [\nabla \cdot \mathbf{V}]_{\mathrm{radial}}$
 - $\nabla \cdot \mathbf{V}_{\text{ext}} = 0$ inside the survey volume.
 - $\left[oldsymbol{
 abla} \cdot oldsymbol{\mathsf{V}}_{ ext{ext}}
 ight]_{ ext{radial}}
 eq 0$ inside the survey volume
- \bullet Hence signatures of external fluctuations must be present in $\delta^{\rm s}$ inside the survey volume.

- Let δ^s be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- Let $V_{\rm ext}$ be the component of the velocity field due to mass distribution external to the survey volume
- Note that
 - $\delta^{\mathrm{s}} = -f^{-1} \nabla \cdot \mathbf{V} [\nabla \cdot \mathbf{V}]_{\mathrm{radial}}$
 - $\nabla \cdot \mathbf{V}_{\mathrm{ext}} = 0$ inside the survey volume.
 - $\left[\boldsymbol{\nabla}\cdot\boldsymbol{V}_{\mathrm{ext}}\right]_{\mathrm{radial}}\neq0$ inside the survey volume
- Hence signatures of external fluctuations must be present in $\delta^{\rm s}$ inside the survey volume.

- Let δ^s be the redshift space density contrast derived from the galaxy distribution in an observed volume.
- Let $V_{\rm ext}$ be the component of the velocity field due to mass distribution external to the survey volume
- Note that
 - $\delta^{\mathrm{s}} = -f^{-1} \nabla \cdot \mathbf{V} [\nabla \cdot \mathbf{V}]_{\mathrm{radial}}$
 - $\nabla \cdot \mathbf{V}_{\mathrm{ext}} = 0$ inside the survey volume.
 - $\left[\boldsymbol{\nabla} \cdot \boldsymbol{V}_{\mathrm{ext}} \right]_{\mathrm{radial}} \neq 0$ inside the survey volume
- Hence signatures of external fluctuations must be present in $\delta^{\rm s}$ inside the survey volume.

Ratio of redshift distortions for two different V_{ext} . Survey volume ~ 1 Gpc/h.

Gaia Luminosity variations

Astrometry of galaxies with Gaia (2013-2018)

$$v_{\parallel} = -\sum_{lm} \frac{d\Phi_{lm}}{ds} Y_{lm}$$

$$\boldsymbol{v}_{\perp} = -\sum_{lm} \frac{\boldsymbol{\Psi}_{lm}}{s} \boldsymbol{\Psi}_{lm}$$

Pros: free of biases, allows tests of potential flow ansatz

Gaia Luminosity variations

Galaxies as standard candles

For a Schechter luminosity function ($\alpha = -1$):

- < L >_{_{L>2L_*}} = 2.77L_*, \, \sigma_{_{L>2L_*}} = 0.81L_*
- < L >_{_{L>4L_*}} = 4.85L_*, \, \sigma_{_{L>4L_*}} = 0.74L_*

How do we use this? (Tamman, Yahil & Sandage 79)

- take a very large redshift survey
- as estimate of magnitudes, compute $M_0 = m - 5log(cz) = m - 5log(Hr + V)$
- true magnitudes are $M_t = m 5log(Hr)$
- constrain a model for V by maximising $P(M_0)$, assuming $P(M_t)$ does not depend on velocity.

Application to 2MRS

As a velocity model, take $V(\beta = f/b)$ from the 2MRS galaxy distribution. Tune β such as $P(M_0)$ is maximum (or by minimising the scatter in $M_e st = m - 5log(cz - V(\beta))$ with respect to β .

Gaia Luminosity variations

This is remarkably consistent with Davis et al using direct distance indicators!

Gaia Luminosity variations

- ACDM is a good approximation on scales 10s 100s Mpc/h.
- The scales 100s Mpc to CMB, remain to be assessed.
- Almost surely, ACDM needs tweaking on small scales smaller that a few Mpc
- Bulk flow is reasonable. But,
 - it is hard to pin-point specific structures causing it
 - it could simply be an accumulated effect over scales of a few 100s Mpc (see Bilicki et al 2011)
- Direct distance indicators such as Tully-Fisher are limited and are difficult to analyze. We have to explore other possibilities.

Gaia Luminosity variations

- ACDM is a good approximation on scales 10s 100s Mpc/h.
- The scales 100s Mpc to CMB, remain to be assessed.
- Almost surely, ACDM needs tweaking on small scales smaller that a few Mpc
- Bulk flow is reasonable. But,
 - it is hard to pin-point specific structures causing it
 - it could simply be an accumulated effect over scales of a few 100s Mpc (see Bilicki et al 2011)
- Direct distance indicators such as Tully-Fisher are limited and are difficult to analyze. We have to explore other possibilities.

- ACDM is a good approximation on scales 10s 100s Mpc/h.
- The scales 100s Mpc to CMB, remain to be assessed.
- Almost surely, ACDM needs tweaking on small scales smaller that a few Mpc
- Bulk flow is reasonable. But,
 - it is hard to pin-point specific structures causing it
 - it could simply be an accumulated effect over scales of a few 100s Mpc (see Bilicki et al 2011)
- Direct distance indicators such as Tully-Fisher are limited and are difficult to analyze. We have to explore other possibilities.

- ACDM is a good approximation on scales 10s 100s Mpc/h.
- The scales 100s Mpc to CMB, remain to be assessed.
- Almost surely, ACDM needs tweaking on small scales smaller that a few Mpc
- Bulk flow is reasonable. But,
 - it is hard to pin-point specific structures causing it
 - it could simply be an accumulated effect over scales of a few 100s Mpc (see Bilicki et al 2011)
- Direct distance indicators such as Tully-Fisher are limited and are difficult to analyze. We have to explore other possibilities.

- ACDM is a good approximation on scales 10s 100s Mpc/h.
- The scales 100s Mpc to CMB, remain to be assessed.
- Almost surely, ACDM needs tweaking on small scales smaller that a few Mpc
- Bulk flow is reasonable. But,
 - it is hard to pin-point specific structures causing it
 - it could simply be an accumulated effect over scales of a few 100s Mpc (see Bilicki et al 2011)
- Direct distance indicators such as Tully-Fisher are limited and are difficult to analyze. We have to explore other possibilities.