AIP, Potsdam, September 2011

Probing Reionization with the Redshifted 21 cm line

Saleem Zaroubi Kapteyn Astronomical Institute University of Groningen

university of groningen

faculty of mathematics and natural sciences kapteyn astronomical institute

Overview

- i. Introduction.
- ii. Current observational constraints.
- iii. Physical sources of cosmic reionization.
- iv. The 21 cm probe and its physics.
- v. The experiment and its challenges
- vi. Summary

13.7 Gyr

COSMIC MICROWAVE BACKGROUND

DARK AGES

EPOCH OF REIONIZATION

EXTRAGALACTIC FOREGROUNDS

GALACTIC FOREGROUNDS

IONOSPHERE

LOFAR TELESCOPE

BLUEGENE STELLA

t = 0 s

What do we know?

The Lyman-alpha forest

AIP, Potsdam, Sep. 2011

The Lyman- α optical depth from Quasar spectra

High redshift Sloan Digital Sky Survey quasars. The Lyman-α forest at z~6.

Fan et al. 2003, 2006

λ(Å)

From A. Lewis

The WMAP constraint

The WMAP polarization measurement tells us only about the optical depth not about exact ionization redshift. For that one needs a reionization history model. However, reasonable reionization models suggest that ionization has happened at about $z\sim10$.

The IGM temperature at low z

 $\frac{1}{T_0} \frac{dT_0}{dt} - \frac{1}{\mu} \frac{d\mu}{dt} = -2H_0 + \frac{\mu \Delta_{\epsilon}}{-\frac{3}{2}k_B T_0}$

Haiman & Hui 2003

AIP, Potsdam, Sep. 2011

Galaxies at z~7-9 HST WPC3 data

WFC3/IR: 850 - 1170nm 2.1 × 2.3 arcmin field of view 0.13 arcsec pixel⁻¹ 10 times survey power of NIC3

> UDF 4.7 arcmin² 60 orbits in YJH Reaches m_{AB}~29 (5σ)

> > Oesch et al 2010 Bouwens et a. 2010

Galaxies appear to become bluer and show more Lyα with decreasing luminosity and increasing redshift.

Bouwens et al. 2010

Are we missing photons?

Courtesy of M. Haehnelt

What don't we know?

- When did the reionization happen?
- What are the sources of ionizing radiation? Stars, miniqsos, decaying DM, exotic physics,...
- How fast did it spread and in what fashion?
- How did the reionization influence the subsequent galaxy and structure formation in the Universe?

Key Probes of Reionization

- CMB (integral constraint)
- Redshifted 21 cm emission (absorption)
- 21 cm forest at high z
- Gamma ray bursts: How many we should have to constrain reionization?
- Luminosity function of first objects, e.g., Galaxies: Recent results from the new WFC3 aboard HST.

- Background detections: IR, soft x-ray.
- Lyman-α absorption system: ionization, metallicity, thermal history, UV background, proximity effect.
- Lyman alpha emitters
- Metals at high redshift.
- Using the local volume to study reionization.

Possible Sources of Reionization

- Population III stars (Hydrogen & Helium)
 - Very massive, short lived, low abundance, intense UV radiation. Never observed but must have existed!
- Population II stars
 - Normal masses, long lived, abundant, moderate UV radiation.
 These are the old stars observed all around us.
- Mini-quasars (Black hole mass 100-million M_{sun})
 - Black hole driven, very intense, very energetic photons.
- Decaying/annihilating Dark matter particles
- More esoteric physics, e.g., Decaying cosmic strings

21-cm Physics

The 21 cm transition

• The value of the T_s is given by:

$$T_s^{-1} = \frac{T_{CMB}^{-1} + x_{\alpha}T_k^{-1} + x_cT_k^{-1}}{1 + x_{\alpha} + x_c}$$

Field 1958 Madau et al 98 Ciardi & Madau 2003

Lyman- α Coupling

• The Wouthuysen-Field effect, also known as Lymanalpha pumping.

Dominant in both in the case of stars and Blackholes, due to photo and collisional excitations, respectively.

Wouthuysen 1952 Field 1958

Collisional Coupling

- H-H collisions that excite the 21 cm transition. This interaction proceeds through electron exchange.
- H-e collisions. Especially important around primordial X-ray sources (mini-quasars).
 - This effect might also excite Lyman-alpha transition which adds to the T_s T_{CMB} decoupling efficiency.

δT_{μ} , The Brightness Temperature

The Global evolution of the Spin Temperature

Loeb & Zaldarriaga 2004,Pritchard & Loeb 2008, Baek et al. 2010, Thomas & Zaroubi 2010

Simulations of the EoR

• Cosmological Hydro simulations:

1- High enough resolution to resolve halos in which ionization sources form. 2- Span Large Scales as well as small scales, especially since designed arrays have small 1' res. 3- In certain cases DM only simulations are sufficient.

• Out of equilibrium Radiative Transfer:

1- Sources and their SED. 2- Ionization of H and He (not always done). 3- Heating due to the radiative processes. 4- Spin temp decoupling (Ly α & x-ray RT).

• It is very difficult to account for all the physical aspects of the problem and approximations are normally made.

Results from 3D RT

At half ionization the signal rms is about 8mK

$$\delta T_b \approx 28 \text{mK} \left(1+\delta\right) x_{HI} \frac{T_s - T_{CMB}}{T_s} \frac{\Omega_b h^2}{0.02} \left[\frac{0.24}{\Omega_m} \left(\frac{1+z}{10}\right)\right]^{\frac{1}{2}}$$

Results from approximate methods

Spin Temperature issues

In case the spin temp. is of the order the CMB temp. or smaller an absorption signature is expected at high redshifts.

LOFAR

MWA

PAPER

GMRT

SKA

B sin θ = (u² + v²)^{1/2}

u (k_x)

v (k_y)

Radio interferometry (Fourier space measurement)

An interferometer measures coherence in the electric field between pairs of points (baselines).

Hection to source

chi

B=baseline

correlator

Beine

The LOFAR observatory

LBA (10) 30 – 90 MHz

isolated dipoles

HBA 115 - 240 MHz tiles (4x4 dipoles)

NL 80 km 18+ stations Europe >1000 km 8+ stations

Total # of HBA dipoles: \sim 50000.

Timeline:

- 1. Official opening: June 2010
- 2. Data for our project starts: Jan. 2011
- 3. First results (hopefully) mid 2012

AIP, Potsdam, Sep. 2011

June 2010: Queen Beatrix opens LOFAR

LOFAR images

3C61.1

Abel 2256

AIP, Potsdam, Sep. 2011

LOFAR images

Deep Image sub mJy noise

LOFAR 12-hr Simultaneous Imaging and Timing Observation of a Pulsar

The Observation

$T_{sys} = T_{sky} + T_{Receiver}$

Radio sky in 408 MHz continuum

Haslam et al, 1982

Galactic foreground

• SYNCHROTRON EMISSION (~70%)

 SOURCES: electrons trapped in the magnetic fields of discrete galactic supernovae remnants and diffuse emission from interaction of cosmic-ray electrons with galactic magnetic field

DIFFUSE SYNCHROTRON EMISSION

⇒ Spectrum is close to a featureless power law with a smooth variation in spectral index.

⇒ average spectral index (100 MHz) b=-2.55, with position dispersion s(b)~0.1 (Shaver et al. 1999)

- SUPERNOVAE REMENANTS
- Free-Free emission (1%)

Extragalactic foreground

Radio galaxies (AGNs, starburst etc.)

- based on radio sky simulations by Jackson et al. 2005

— 3 TYPES OF SOURCES: FRI, FRII (Fanaroff & Riley 1972) & star forming (SF) galaxies

Galaxy Clusters

— The Hubble Volume Simulation Cluster Catalogue (Virgo Consortium, 2002)

-DMH Mass – Xray correlation (Jenkins et al., 2001)

— X ray – radio luminosity correlation (En β lin & Röttgering, 2002). 30% with radio properties.

— Redshift, virial radius ⇒ angular size

- Spectral index distribution from Cohen et al. 2004

The signal + Foregrounds

Measurement of Diffuse Foregrounds

Bernardi et al. 2009, 2010

Sensitivity & Signal/Noise

Extraction of the Signal

Jelic et al. 2009

δT_b Power spectrum

Lidz et al. (2007)

Power Spectrum Measurements

Power spectra of the Cosmic Signal, the noise, the residuals and the extracted signal. We have assumed 300 hours of observation per frequency channel with a single station beam (600 hours of total observations).

and the foreground fitting is done using Wp smoothing in Fourier space.

PDF and Skewness

Original simulations

Harker et al 2009

PDF of the brightness temp.

The evolution of the PDF of the brightness temp. as a function of redshift could be used to set constraint on reionization.

Ichikawa et al. 2010

Extraction through skewness

Harker et al. 2009

Results

AIP, Potsdam, Sep. 2011

The GMRT-EoR Experiment: HI Power Spectrum

3C196: WSRT versus LOFAR 115-163 MHz

WSRT 72h thermal noise 0.6 mJy confusion noise 3 mJy

Bernardi et al (2010)

3C196 1x6h 115-163 MHz LOFAR +19°00 +18°30 +18°30 B¹20^m 18^m 16^m 16^m 14^m 12^m 10^m 08^m -10^m Right Ascension (J2000)

LOFAR 6h thermal noise ~ 0.15 mJy image noise ~ 0.3-0.7 mJy CS +RS, ~ 30 km, 200+ subbands

DR ~ 83 Jy/0.5 mJy ~ 200,000:1 !!

Labropoulos et al (in prep)

6 hours of observation, 200000:1 dynamic range, 0.3 mJy sensitivity

CALSAGE Calibration

Yatawatta et al. 2009 Kazemi et al. 2011

CalSAGE algorithm: 49 sources simultaneously used. The algorithm takes 24 hours in this case

Courtesy of Labropolous

Summary

- High sensitivity data in the frequency range 115–190MHz will be available in the coming few years.
- Extracting the EoR signal involves many challenging step:
 - Very accurate Calibration
 - Very accurate modeling of noise
 - "Fitting" very prominent foregrounds
- We are on the verge of exploring the Universe in a completely new window